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Loss Functions in Machine Learning
Problem Statement
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Most of them are non-differentiable and
non-decomposable

Evaluation metrics are used to measure the
performance of models

but

Loss functions are designed as proxies of
evaluation metrics

How to design loss functions automatically?

but
Manually designing a loss
• Requires expertise on specific tasks
• Hard to align well with the metric

BLEU vs. CE loss of samples on neural machine translation 
task, showing a weak correlation (Spearman: -0.58).
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Surrogate Loss Learning
Introduction
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… …

Loss FunctionGT labels Loss

Input Model Predictions
Training models with conventional loss function.
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Surrogate Loss Learning
Introduction
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► Approximate the evaluation metrics using a deep neural network (DNN)

► Replace the conventional loss function with the learned DNN

Training models with surrogate loss.
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Evaluation Metric Score

approximate

Training surrogate loss. Predictions of evaluation metric and learned surrogate loss.
The loss values wave drastically.

Surrogate Loss Learning
Limitations
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Poor performance
► The surrogate loss cannot fully recover the metric values
Weak generalizability
► Easy to overfit on the training samples

→ need to train surrogate loss and model alternatively
► The learned surrogate loss cannot generalize to different models and tasks



Relational Surrogate Loss Learning
Motivation
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Our solution:
► Only learn rank correlations between the loss and

metric instead of approximating the metric
► Propose a differentiable rank correlation loss using

differentiable sorting algorithm (Petersen et al., 2021)

► Evaluation metrics (losses) are used to distinguish
whether a model is better or worse than another

→ we only need to keep the relative rankings of
samples between the loss and metric

[1] Petersen, Felix, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting networks for scalable 
sorting and ranking supervision. In International Conference on Machine Learning, pp. 8546-8555. PMLR, 2021.

Rank correlations between loss and metric
(approximation-based loss vs. our correlation-based loss).



Relational Surrogate Loss Learning
Gradient Penalty
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Effect of gradient penalty:
► Stabilize model training
► Improve generalizability

We only constrain the correlation in the training of surrogate loss
→ its first-order derivative changes drastically

Solution: an additional gradient penalty term to enforce the Lipschitz constraint

Loss term of gradient penalty (Eq.(8) in the paper).



Relational Surrogate Loss Learning
Comparison to prior art
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[2] Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. arXiv. preprint arXiv:1905.10108, 2019.

Relational Surrogate Loss Learning
► Train once for all the models of each task
► One learned loss generalizes to all the models
► Better performance

Learning Surrogate Losses [2]
► Train losses and models alternatively
► Train losses independently for each model
► Poor performance in our toy experiment

Convergent curves of toy experiment, lower is better.



Relational Surrogate Loss Learning
Experiments
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BLEU vs. ReLoss (Spearman: -0.90).
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Better rank correlations compared to the original loss
functions in
► Neural machine translation: BLEU
► Machine reading comprehension: F1
► Human pose estimation: PCK
► Image classification: ACC

BLEU vs. CE loss (Spearman: -0.58).
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Relational Surrogate Loss Learning
Experiments
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Image Classification

Human Pose Estimation (outperforms SOTA)

Neural Machine Translation

Machine Reading Comprehension (outperforms SOTA)

Better performance on both CV and NLP tasks:



Relational Surrogate Loss Learning
Conclusion
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► We study an interesting problem:

Learning losses for non-differentiable evaluation metrics

► We use a simple method:
Differentiable rank correlation to train better surrogate losses

► Potential applications:
l New tasks with losses difficult to design

l Existing tasks with losses align weak to evaluation metrics



Thank you!
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The code is available at: https://github.com/hunto/ReLoss

https://github.com/hunto/ReLoss

