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Loss Functions in Machine Learning

Problem Statement
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evaluation metrics BLEU
but BLEU vs. CE loss of samples on neural machine translation

task, showing a weak correlation (Spearman: -0.58).
Manually designing a loss

» Requires expertise on specific tasks _ _ _
- Hard to align well with the metric How to design loss functions automatically?



Surrogate Loss Learning

Introduction
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Model Predictions

Training models with conventional loss function.



Surrogate Loss Learning
Introduction

GT labels

Input Model Predictions

Training models with surrogate loss.

» Approximate the evaluation metrics using a deep neural network (DNN)

» Replace the conventional loss function with the learned DNN



Surrogate Loss Learning

Limitations
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Training surrogate loss.

Poor performance

» The surrogate loss cannot fully recover the metric values

Weak generalizability

» Easy to overfit on the training samples
— need to train surrogate loss and model alternatively
» The learned surrogate loss cannot generalize to different models and tasks
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Predictions of evaluation metric and learned surrogate loss.
The loss values wave drastically.



Relational Surrogate Loss Learning

Motivation
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Our solution: 9 |
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metric instead of approximating the metric Tterations
» Propose a differentiable rank correlation loss using Rank correlations between loss and metric

differentiable sorting algorithm (Petersen etal, 2021) (approximation-based loss vs. our correlation-based loss).

[1] Petersen, Felix, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting networks for scalable
sorting and ranking supervision. In International Conference on Machine Learning, pp. 8546-8555. PMLR, 2021.
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Relational Surrogate Loss Learning
Gradient Penalty

We only constrain the correlation in the training of surrogate loss
— its first-order derivative changes drastically
Solution: an additional gradient penalty term to enforce the Lipschitz constraint

Lpenalty = (” Vy‘c(yaga ol) ”2 _1)2'

Loss term of gradient penalty (Eq.(8) in the paper).

Effect of gradient penalty:
» Stabilize model training
» Improve generalizability



Relational Surrogate Loss Learning
Comparison to prior art

Learning Surrogate Losses [2] Relational Surrogate Loss Learning
» Train losses and models alternatively » Train once for all the models of each task
» Train losses independently for each model » One learned loss generalizes to all the models
» Poor performance in our toy experiment » Better performance
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Convergent curves of toy experiment, lower is better.

[2] Josif Grabocka, Randolf Scholz, and Lars Schmidt-Thieme. Learning surrogate losses. arXiv. preprint arXiv:1905.10108, 2019.
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Relational Surrogate Loss Learning . :
Experiments
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Better rank correlations compared to the original loss Eﬂ; 025+ ’ \\'\'\
functions in = y T
» Neural machine translation: BLEU 20T .
Machine reading comprehension: F1 070 075 080 085 090 095
BLEU

BLEU vs. CE loss (Spearman: -0.58).
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» Human pose estimation: PCK
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Image classification: ACC
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BLEU vs. RelLoss (Spearman: -0.90).




Relational Surrogate Loss Learning
Experiments
Better performance on both CV and NLP tasks:

Image Classification Neural Machine Translation

Dataset Model CE ReLoss —
Top-1 (%) Top-5 (%) Top-1 (%) Top-5 (%) Model Speed Original loss ReLoss on EN-RO | ReLoss on RO-EN
CIPAR-I0 ResNet-56 24322025 ] 2457+ 0.08 ] Transformer (Vaswani et al.l.]2017b 1.0x ]331\;?80 R;";EF EN:RO RO:EN EN:RO RO:EN
Cha0 | ==ses reol =5 0l - Hado 014 - NAT-Base (Gu et al, 2017 15.6x | 29.24 2897 |30.07 10w 29.68 1071 |29.93 1060 29.61 w04
ImageNet ;ejgle;\?g va 7/?-2 2(3)-(3) ;g“;‘ gg-g BoN-L1(N=2)" (Shao et al} 2021) | 15.6x | 30.76 30.46 |30.96 1020 30.74 025 |30.88 1012 30.78 0
Human Pose Estimation (outperforms SOTA) Machine Reading Comprehension (outperforms SOTA)
Method [Backbone | Input size | AP AP® AP™® APM AP’ AR |PCK@0.05 Method [ROUGEL [BLEU4] FL
validation set - dev set
SimpleBaseline (Xiao et al| 2018) [ResNet-50 |256 x 192[70.4 88.6 783 67.1 77.2 763] 850 MacBERT-base (Cui et al|2020) | 514 503 539
SimpleBaseline + ReLoss ResNet-50 |256 x 192|719 89.9 80.0 68.0 77.9 77.3| 86.1 MacBERT-base + ReLoss 1.8 506|542
HRNet (Sun et al|2019) HRNet-W32|256 x 192|744 905 81.9 70.8 81.0 79.8| 86.7 MacBERT-large (Cui etal,2020) |  53.2 51.2° 155.5
HRNet + ReLoss HRNet-W32 (256 x 192(74.8 90.5 82.4 70.9 81.2 79.9| 87.3 MacBERT-large + ReLoss 53.6 514|559
test-dev set test set
G-RMI (Papandreou et al.|2017) |ResNet-101 [353 x 257(64.9 85.5 71.3 623 70.0 69.7| - BiDAF' (Seo et al., 2016) 39.2 319 | -
SimpleBaseline (Xiao et al.HZOle ResNet-101 384 x 288|73.7 91.9 81.1 70.3 80.0 79.0 - [Wang et al.[(2018) 442 41.0 .
HRNet (Sun et al.| 2019 HRNet-W48 |384 x 288(75.5 92.5 833 719 815 805| - MCR-Net-large (Peng et al|2021) | 50.8 492 | -
DARK (Zhang et al.| 2020) HRNet-W48 |384 x 288|762 92.5 83.6 72.5 82.4 81.1| - Human Performance’ 57.4 56.1 | -
DARK + ReLoss HRNet-W48 |384 x 288|76.4 92.7 83.7 72.7 82.5 813 - MacBERT-large + ReLoss 64.9 618 | -
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Relational Surrogate Loss Learning
Conclusion

» We study an interesting problem:

Learning losses for non-differentiable evaluation metrics

» We use a simple method:

Differentiable rank correlation to train better surrogate losses
» Potential applications:

e New tasks with losses difficult to design

e Existing tasks with losses align weak to evaluation metrics
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Thank you!

The code is available at: https://github.com/hunto/RelLoss
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https://github.com/hunto/ReLoss

