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Motivation
Loss Functions:

1. Designed as proxies of evaluation met-
rics.

2. Requires expertise on specific tasks.
3. Often hard to align well to the metric.

Surrogate Loss Learning:
1. Approximate the evaluation metrics

using a deep neural network (DNN).
2. Replace the conventional loss function

with the learned DNN.

Limitations:
1. It is difficult for the surrogate loss to

fully recover the metric values.
2. Since the surrogate loss is easy to over-

fit on the training samples, it needs to
be trained with model alternatively.

3. The learned surrogate loss cannot gen-
eralize to different models and tasks.

Intuition
Evaluation metrics (losses) are used to

distinguish whether a model is better or
worse than another.
Solution: we only need to keep the relative

rankings of samples between the loss
and metric.

Learning Surrogate Loss with Correlation-based Objective
Spearman’s rank correlation:

ρS(a, b) =
Cov(ra, rb)

Std(ra)Std(rb)
=

1
n−1 ∑n

i=1(rai − E(ra))(rbi − E(rb))
Std(ra)Std(rb)

(1)

ra: rank vector of a; Cov(ra, rb): covariance of the rank vectors;
Std(ra): standard derivation of ra.

Correlation-based objective:

Os(L(y, ŷ;θl),M(y, ŷ)) = ρS(L(y, ŷ;θl),M(y, ŷ)) (2)

y: model predictions; ŷ: ground-truth labels;
L: surrogate loss with learnable weights θl ; M: evaluation metric.

Compare with approximation-based objective:

correlation-based
approximation-based
metric

Surrogate loss learned with correlation-based objective
1. has higher rank correlations to the evaluation metric;
2. achieves better performance compared to approximation-based objective;
3. smoother convergent curve compared to original loss (metric).

Experiments
ReLoss vs. conventional losses:

ReLoss achieves bet-
ter correlations com-
pared to the original
loss functions.

Image classification:
Dataset Model CE ReLoss

CIFAR-10 ResNet-56 94.32 94.57
CIFAR-100 ResNet-56 73.61 74.15
ImageNet ResNet-50 76.5 76.8
ImageNet MobileNet V2 71.8 72.2

Human pose estimation:
Method Backbone MSE ReLoss

SimpleBaseline ResNet-50 70.4 71.9
HRNet ResNet-50 74.4 74.8

Neural machine translation:
Model Dataset ori. loss ReLoss

NAT-Base EN-RO 29.24 30.07
NAT-Base RO-EN 28.97 29.68

Machine reading comprehension:
Method ROUGE-L BLEU-4 F1

MacBERT-base 51.4 50.3 53.9
NAT-Base 51.8 50.6 54.2


