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Motivation
One-shot NAS: Based on the weight-sharing

paradigm, One-shot NAS methods model
NAS as a one-shot training process of an
over-parameterized supernet, where vari-
ous architectures can be directly derived.

Single Path Methods:
1. Iteratively train the paths (architectures)

in the supernet.
2. Search architectures then return the one

with the best performance.
Issues:

• Current methods select each operation in-
dependently without considering previ-
ous layers.

• The historical information obtained with
huge computation cost is usually used
only once and then discarded.

• The search cost is high since it usually
searches a large number (e.g., 1000) of ar-
chitectures for a good result.

Intuition
Modeling the search space as a Monte-Carlo

tree (MCT), which can naturally
• capture the dependency among layers

with a tree structure;
• store intermediate results for future deci-

sion and a better exploration-exploitation
balance;

• bridge the training and search by search-
ing on the MCT constructed in training.

Problems:
1. Q: How to reward the operations in MCT?

A: Use the training loss Ltr as the Q-value
in UCT function.

2. Q: It’s impossible to explore all the nodes
since the number of nodes grows expo-
nentially with the increment of depth.
A: 1. We propose a node communication
technique to share the rewards for nodes
with the same operation and depth.
2. We propose a hierarchical node se-
lection method to select the node hierar-
chically and re-evaluate those less-visited
nodes.

Experimental Settings
ImageNet:

• Search space: MobileNetV2 in-
verted bottleneck with CNN
kernel {3, 5, 7}, expansion ratio
{3, 6} and optional SE module.
Size 1321 with identity.

• Supernet: train 60 epochs using
uniform sampling for warm-up,
60 epochs with MCTS

• Search: 20 architectures in MCT
• Retraining: following Mnasnet.

CIFAR-10:
• Search space: MobileNetV2 in-

verted bottleneck with kernel
size {3, 5} and expansion ratio {3,
6} Size 38 with identity.

• Supernet: train 100 epochs us-
ing uniform sampling for warm-
up, 100 epochs with MCTS

• Search: 20 architectures in MCT
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Framework of MCT-NAS
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MCT-NAS models the search space into a MCT (left), then updates the tree with a prioritized
sampling strategy during training (middle), finally searches the optimal architecture using hierar-
chical node selection (right).

Training with Prioritized Sampling
We use the training loss as the Q-value in

UCT function, calculated as

Q(v(l)i ) =
L̃t

Ltr(αt)
,

where L̃t denotes the training loss of the current
architecture, αt is the moving average of train-
ing loss in previous t iterations.

The UCT function for the node v(l)i in layer l
with choice i is calculated by

UCT(v(l)i ) =
Q(v(l)i )

n(l)
i

+ C1

√√√√ log(n(l−1)
p )

n(l)
i

,

where n(l−1)
p and n(l)

i denotes the visit times of
parent node and this node, respectively.

To make more nodes evaluated, we relax the
operation selection in MCTS into a probabilistic
distribution, formulated as

Pt(v
(l)
i ) =

exp
(

UCT(v(l)i )/τ
)

∑j≤Nl exp
(

UCT(v(l)j )/τ
) , (1)

where τ is a temperature term. We set τ to 0.0025
in all of our experiments.

Node Communication and Hierarchical Node Selection
In supernet training: We propose a node

communication technique to share the rewards
for nodes with the same operation and depth.
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In search: We propose a hierarchical node
selection method to select the node hierar-
chically; for those less-visited nodes, we re-
evaluated them using a small validation set.
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NAS-Bench-Macro
We propose a NAS benchmark on macro

structures with CIFAR-10 dataset. The bench-
mark is avaliable at https://github.com/
xiusu/NAS-Bench-Macro.

Our MCT-NAS can obtain better supernet
with higher ranking correlation:

Methods Spearman rho Kendall tau
uniform 88.96% 72.41%
MCTS 90.63% 74.66%

uniform + MCTS 91.87% 76.22%

Our MCT-NAS can search better architec-
tures with fewer search number:

Top ACCs of searched ar-
chitectures:
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Comparison with State-of-the-art NAS Methods on ImageNet
Methods Top-1

(%)
FLOPs

(M)
Params

(M)
training
(Gdays)

search
number

SCARLET-C 75.6 280 6.0 10 8400
GreedyNAS-C 76.2 284 4.7 7 1000

MCT-NAS-C 76.3 280 4.9 12 20× 5
Single-path 76.2 328 - 12 1000
ST-NAS-A 76.4 326 5.2 - 990

GreedyNAS-B 76.8 324 5.2 7 1000
MCT-NAS-B 76.9 327 6.3 12 20× 5

EfficientNet-B0 76.3 390 5.3 - -
ST-NAS-B 77.9 503 7.8 - 990

MCT-NAS-A 78.0 442 8.4 12 20× 5
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Visualization of first 3 layers of
searched MCT.


