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NAS with search space shrinkage:

1. Enhancing the discriminability of
one-shot supernet by greedily filter-
ing out those weak paths.

2. Path-level shrinkage: remove spe-
cific paths in the search space.

3. Operation-level shrinkage: re-
move operations of each layers.

Limitations:

1. Too aggressive to train the elite
paths with enough diversity with a
limited number of evaluation paths.

2. Imprecise measuring of operation
importance: =~ manually-designed
importance metrics, lack of intra-
layer dependencies.

1. Learn a path filter with the highly-
confident weak paths. Therefore,
the filter can locate the good and
weak paths more precisely with
limited evaluated paths.

2. Find unimportant operations using
the learned path filter, which con-
tains operation-level importance
and intra-layer dependencies.

Greedier Sampling with a Path Filter
Learning path filter as PU prediction
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With the highly-confident “weak” paths evaluated by multi-path
sampling in GreedyNAS, GreedyNASv2 proposes to leverage
positive-unlabeled (PU) learning to train a promising path filter.
Supernet training;:

1. Get the last-k out of m randomly-sampled paths by evaluat-
ing them on a small validation set.

2. Train the path filter using PU learning. Positive set: weak
paths obtained in step 1; unlabeled set: random paths.

3. Use the path filter to filter those weak paths.

Experiments

Results on the proposed ResNet search space:

Shrinking operations with learned embeddings
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Motivation:

e PU filter: distinguish whether a path is good or weak using
the learned operation embeddings.

e [If two operations of a layer have the same embedding, they
will have the same influence on the classification results on
every paths.

e — we can merge the operations with similar embeddings
and keep the less-costly ones.

Visualization of the learned opera-
tion similarities:

Experiments on different scales of
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Visualization of archs
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