

Motivation

NAS with search space shrinkage:

- 1. Enhancing the discriminability of one-shot supernet by greedily filtering out those weak paths.
- 2. Path-level shrinkage: remove specific paths in the search space.
- 3. Operation-level shrinkage: remove operations of each layers.

Limitations:

- 1. Too aggressive to train the elite paths with enough diversity with a limited number of evaluation paths.
- 2. Imprecise measuring of operation manually-designed importance: importance metrics, lack of intralayer dependencies.

Intuition

- 1. Learn a path filter with the highlyconfident weak paths. Therefore, the filter can locate the good and weak paths more precisely with limited evaluated paths.
- 2. Find unimportant operations using the learned path filter, which contains operation-level importance and intra-layer dependencies.

Learning path filter as PU prediction

With the highly-confident "weak" paths evaluated by multi-path sampling in GreedyNAS, GreedyNASv2 proposes to leverage positive-unlabeled (PU) learning to train a promising path filter. **Supernet training:**

Experiments

Experiments on different scales of search spaces [S-L]:

Met

SP Greedy Greedyl

GreedyNASv2: Greedier Search with a Greedy Path Filter

Tao Huang^{1,2} Shan You^{1,3*} Fei Wang⁴ Chen Qian¹ Changshui Zhang³ Xiaogang Wang¹ Chang Xu² ¹SenseTime Research ²School of Computer Science, Faculty of Engineering, The University of Sydney ³Department of Automation, Tsinghua University ⁴University of Science and Technology of China youshan@sensetime.com

Greedier Sampling with a Path Filter

1. Get the last-*k* out of *m* randomly-sampled paths by evaluating them on a small validation set.

2. Train the path filter using PU learning. Positive set: weak paths obtained in step 1; unlabeled set: random paths.

3. Use the path filter to filter those weak paths.

hod		ACC		supernet ACC		
	S	Μ	L	S	Μ	L
OS	76.8	76.6	75.5	56.5	48.2	33.4
yNAS	77.1	76.8	76.5	57.6	49.3	35.1
vNASv2	77.3	77.4	77.5	58.1	55.5	43.8

Results on the proposed ResNet search space:

Mathad	ACC	FLOPs	Params	Cost	Search
Method	(%)	(M)	(M)	(days)	num.
ResNet-50	76.1	4089	25.6	_	_
ResNeXt-50	77.8	4230	25.0	_	_
SE-ResNeXt-50	78.9	4233	27.6	_	_
SPOS	80.6	4153	27.8	15.4	1000
GreedyNAS	80.8	4125	28.1	11.3	1000
GreedyNASv2	81.1	4098	26.9	9.0	500

