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Motivation
NAS with search space shrinkage:

1. Enhancing the discriminability of
one-shot supernet by greedily filter-
ing out those weak paths.

2. Path-level shrinkage: remove spe-
cific paths in the search space.

3. Operation-level shrinkage: re-
move operations of each layers.

Limitations:
1. Too aggressive to train the elite

paths with enough diversity with a
limited number of evaluation paths.

2. Imprecise measuring of operation
importance: manually-designed
importance metrics, lack of intra-
layer dependencies.

Intuition
1. Learn a path filter with the highly-

confident weak paths. Therefore,
the filter can locate the good and
weak paths more precisely with
limited evaluated paths.

2. Find unimportant operations using
the learned path filter, which con-
tains operation-level importance
and intra-layer dependencies.

Greedier Sampling with a Path Filter
Learning path filter as PU prediction
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With the highly-confident “weak” paths evaluated by multi-path
sampling in GreedyNAS, GreedyNASv2 proposes to leverage
positive-unlabeled (PU) learning to train a promising path filter.
Supernet training:

1. Get the last-k out of m randomly-sampled paths by evaluat-
ing them on a small validation set.

2. Train the path filter using PU learning. Positive set: weak
paths obtained in step 1; unlabeled set: random paths.

3. Use the path filter to filter those weak paths.

Shrinking operations with learned embeddings
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Motivation:
• PU filter: distinguish whether a path is good or weak using

the learned operation embeddings.
• If two operations of a layer have the same embedding, they

will have the same influence on the classification results on
every paths.

• −→ we can merge the operations with similar embeddings
and keep the less-costly ones.

Experiments

Experiments on different scales of
search spaces [S-L]:

Method
ACC supernet ACC

S M L S M L
SPOS 76.8 76.6 75.5 56.5 48.2 33.4

GreedyNAS 77.1 76.8 76.5 57.6 49.3 35.1
GreedyNASv2 77.3 77.4 77.5 58.1 55.5 43.8

Results on the proposed ResNet search space:

Method
ACC FLOPs Params Cost Search
(%) (M) (M) (days) num.

ResNet-50 76.1 4089 25.6 - -
ResNeXt-50 77.8 4230 25.0 - -

SE-ResNeXt-50 78.9 4233 27.6 - -
SPOS 80.6 4153 27.8 15.4 1000

GreedyNAS 80.8 4125 28.1 11.3 1000
GreedyNASv2 81.1 4098 26.9 9.0 500

Visualization of the learned opera-
tion similarities:

1       2      3      4      5      6      7       8      9     10     11    12    13

IDMB6_
K7_SE

MB6_
K5_SE

0.12 0.60 0.31 0.45 -0.80

0.03 0.62 0.05 0.42 -0.60

0.87 0.00 0.84 0.88 -0.57

0.83 -0.09 0.89 0.73 -0.45

0.37 0.21 0.52 0.74 -0.69

MB6_
K3_SE

MB6_
K7

MB3_
K3

MB3_
K5

MB3_
K7

MB3_
K3_SE

MB3_
K5_SE

-1 10

13
   

 1
2 

   
11

   
 1

0 
   

 9
   

   
8 

   
  7

   
   

 6
   

   
5 

   
  4

   
   

 3
   

   
2 

   
  1

Visualization of archs
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