GreedyNAS: Towards Fast One-Shot NAS
with Greedy Supernet
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Supernet: a fundamental performance estimator
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of different architectures (paths).
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Target Assumption: the supernet should estimate

the performance accurately for all paths, and thus [oNe 8&.‘ [oNe \D el |016 OO0l [0 ‘/Q )
all paths are treated equally and trained

. tail
simultaneously.
£ o2 1. Itis harsh to evaluate accurately on such a huge-scale search
I space (e.g. 721).
g 2. Training architectures with inferior quality would disturb the
& 5 10 15 20 25 30 35 40 45 weights of those potentially-good paths.
Epoch . . .
_ o 3. Training on those weak paths involves unnecessary update of
Correlation between the one-shot validation error and the weights, and slows down the training efficiency.

corresponding NAS-Bench-101 test error. (arXiv: 2001.10422)



Intuition: Path Filtering 155 )i

Supernet @ good path @ weak path

Consider a complete partition of search space A
of two subsets Agpoq and Ayeqr: . o
A= »Agood U Aweaks -Agood ﬂ Aweak = ©, ‘@ '\ ® s
where for an Oracle supernet A, . @ o
: ‘ \‘\ \‘\ ,:
: ® \ !
ACC(G,N@, Dval) Z ACC(b,NO, Dval) :: . \\“ \\\ . ,':
S Y
holds for all @ € -Agood/ b € A, ..x onvalidation datasetD,,;. | = T ‘




Intuition: Path Filtering

Idea: just sample from the potentially-good paths A4
instead of all paths A :

1
p(a; No, Dyyp) = A d|I[(a = Agood)°
200

Problems:
« Q: Oracle supernet is unknown.
A: greedily use current supernet as a proxy.

« Q: How can we accurately identify whether a path is
from Agood Or Ay (computation cost of evaluating
all paths in A is unacceptable)?

A: multi-path sampling with rejection.
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Supernet  @©good path @ weak path
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Solution: Multi-path Sampling with Rejection =

sensetime

Theorem: Ifm paths are sampled uniformly i.i.d. from A , then it
holds that at least k (k <m) paths are from Ag,.; with probability

p
1

Zcmq (1 o Q) ) 0.8

Jj=k 07°F
h A A 0.6 ——a=0.5(m=10)
where q = . —=0.6(m=10)
q = |Agood|/| Al 05 | 908m-10
0.4+ |—q=0.8(m=10)
03" --q=0.g(m=§0)
With g = 0.6, it has 83.38% confidence to say at least 5 R e

out of 10 paths are from A4 . 0.1 |~ a=0.8(m=20) \
8 Tl S k/m

0O 011 0i2 0.13 Oi4 015 0i6 Oi7 018 0.9 1
Solution: just rank the sampled m paths using validation

dataD,,; , keep the Top-k paths and reject the remaining
paths.



Exploration and Exploitation Training with Candidate Path Pool

We further introduce a candidate path pool to store

Supernet

Sample (exploration)

Sample (exploitation)
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with probability 1—¢

with probability e

the discovered good paths, and sample from it, :
a~(l—¢€)-U(A)+e-U(P), . Te e

Advantages: T .
1. boosting the training efficiency
2. increasing the probability of sampling good S

pathS q=¢€+ (1 — €)|-Agood|/|~’4|> €.g. from 0.3

83.38% to 99.36% for 5/10 with € = 0.5 Sop |EEwihpool
3. stopping principle via candidate pool %0_1

Stop by observing the steadiness of pool: 0 et e e e

Top-1 ACC (%)
= |Pt‘ Q ’P| <a Figure 3: Histogram of accﬁlracy of searched paths on su-

pernet by evolutionary searching method (with or without

4. searching by initializing with candidate pool candidate pool).



Using Smaller Validation Dataset for Training-aware Evaluation =N

Problem: It is computationally expensive for
evaluating paths using full validation dataset
during training.

Solution: Using a small portion of validation
dataset (1k images) for evaluation.

Table 3: Rank correlation coefficient of 1000 paths mea-

sured by the loss (ACC) of 1K validation images and ACC

of 50K validation images w.r.t. different types of supernets.
Spearman rho Kendall tau

random uniform(ACC) greedy| random uniform(ACC) greedy
0.155 0.968(0.869) 0.997 || 0.113 0.851(0.699) 0.961
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Figure 4: Rank correlation coefficient of 1000 paths mea-
sured by the loss of N validation images and ACC of the
whole 50K validation images. Left: Comparison (Kendall
tau) of supernet by uniform and greedy sampling w.r.t. dif-
ferent number N of evaluation images. Right: N = 1K
w.r.t. different training iterations of supernet by uniform
sampling.




Experimental Results

Searching Results with Same Search Space on ImageNet

Methods performance supernet training efficiency
Top-1 (%) | FLOPs | latency || #optimization | #evaluation | corrected #optimization

Proxyless-R (mobile) 74.60 320M 79 ms - - -
Random Search 74.07 321M 69 ms 1.23M x120 - 147.6M
Uniform Sampling 74.50 326M 72 ms 1.23M x120 - 147.6M
FairNAS-C 74.69 321M 75 ms 1.23M x 150 - 184.5M
Random Search-E 73.88 320M 91 ms 1.23M x73 - 89.8M
Uniform Sampling-E 74.17 320M 94 ms 1.23M x73 - 89.8M
GreedyNAS 74.85 320M 89 ms 1.23M x 46 2.40Mx 46 89.7M
GreedyNAS 74.93 324M 78 ms 1.23M x46 2.40Mx 46 89.7M

Comparison with state-of-the-art NAS methods on ImageNet

Top-1 | FLOPs latency Params || training  search
Methods || "oy | M)  (ms) (M) || (Gdays) (Gdays)
SCARLET-C || 75.6 280 67 6.0 10 12
MnasNet-Al || 75.2 312 55 3.9 288t -
GreedyNAS-C || 76.2 284 70 4.7 7 <1
FairNAS-C || 74.7 321 75 44 10 2
SCARLET-B || 76.3 329 104 6.5 10 12
GreedyNAS-B 76.8 324 110 52 7 <1
SCARLET-A || 76.9 365 118 6.7 10 12
EfficientNet-B0 || 76.3 390 82 5.3 - -
DARTS || 73.3 574 : 4.7 4t -
GreedyNAS-A || 77.1 366 77 6.5 7 <1
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