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Motivation
Structural re-parameterizaion (Rep):

1. Train: Transforms the original
model into an augmented model.

2. Inference: Re-parameterizes the
trained augmented model back to
the original architecture.

Advantages:
1. Improves performance without in-

creasing FLOPs or parameters.
2. Deploy-friendly: simple VGG-style

architectures in inference.

Limitations:
1. Expensive computation overhead:

current methods simply Rep all op-
erations into augmented ones.

2. Rep may introduce redundant oper-
ations, which slow down the train-
ing and even worsen the perfor-
mance.

Intuition
1. Only Rep those important opera-

tions in the model.
2. De-parameterize those redundant

operations during training.

Dynamic Re-parameterization (DyRep)
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DyRep: Dynamically evolves network during training with Rep and Dep.

Training-aware re-parameterization (Rep):

1. Locate the operation contribute the most to the training loss
using synflow saliency So(θ) = ∑n

i=1
∂L
∂θi

⊙ θi .
2. Augment the located operation with additional branches,

where the branches are randomly-initialized, and the
weights original operation are computed using Rep.

3. Batch normalization layers are initialized and calibrated for
stable training.

Training-aware de-parameterization (Dep):

1. Measure the importance of every branch using γ in BN: sj =
1
C ∑C

k=1 |γk|.
2. Locate the redundant operations with sj < Mean({sj}n

j=1)

when the branches satisfying
√

Var({sj})n
j=1.

3. Absorb the weights of removed operations into the original
operation.

Experiments
Compare with DBB and plain networks:
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Our DyRep obtains the highest accuracies
yet has much smaller training cost com-
pared to DBB.

Ablation on Rep and Dep:
Method FLOPs (M) Params (M) ACC (%)
origin 313 15.0 94.68±0.08
Rep 658 29.3 95.03±0.15

Rep + Dep 597 29.3 95.22±0.13

Visualization of augmented operation:
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