

Motivation

Structural re-parameterizaion (Rep):

- 1. **Train:** Transforms the original model into an augmented model.
- 2. Inference: Re-parameterizes the trained augmented model back to the original architecture.

Advantages:

- 1. Improves performance without increasing FLOPs or parameters.
- 2. Deploy-friendly: simple VGG-style architectures in inference.

Limitations:

- 1. Expensive computation overhead: current methods simply Rep all operations into augmented ones.
- 2. Rep may introduce redundant operations, which slow down the training and even worsen the performance.

Intuition

- 1. Only Rep those important operations in the model.
- 2. De-parameterize those redundant operations during training.

DyRep: Bootstrapping Training with Dynamic Re-parameterization

Tao Huang^{1,2} Shan You^{1*} Bohan Zhang³ Yuxuan Du² Fei Wang⁴ Chen Qian³ Chang Xu² ¹SenseTime Research ²School of Computer Science, Faculty of Engineering, The University of Sydney ³College of Information and Computer Sciences, University of Massachusetts Amherst ⁴University of Science and Technology of China youshan@sensetime.com

Dynamic Re-parameterization (DyRep)

1. Locate the operation contribute the most to the training loss using synflow saliency $S_o(\theta) = \sum_{i=1}^n \frac{\partial \mathcal{L}}{\partial \theta_i} \odot \theta_i$.

2. Augment the located operation with additional branches, where the branches are randomly-initialized, and the weights original operation are computed using Rep.

3. Batch normalization layers are initialized and calibrated for stable training.

- 1. Measure the importance of every branch using γ in BN: $s_i = 1$ $\frac{1}{C}\sum_{k=1}^{C} |\gamma_k|.$
- 2. Locate the redundant operations with $s_i < \text{Mean}(\{s_i\}_{i=1}^n)$ when the branches satisfying $\sqrt{Var(\{s_i\})_{i=1}^n}$.
- 3. Absorb the weights of removed operations into the original operation.

Experiments

Compare with DBB and plain networks:

Our DyRep obtains the highest accuracies yet has much smaller training cost compared to DBB.

Ablation on Rep and Dep:

Method	FLOPs (M)	Params (M)	ACC (%)
origin	313	15.0	$94.68 {\pm} 0.08$
Rep	658	29.3	$95.03 {\pm} 0.15$
Rep + Dep	597	29.3	95.22±0.13

Visualization of augmented operation:

