

## Motivation

Stronger Teacher: Current KD methods mainly focus on baseline training settings, while today's state-of-the-art approaches are using much stronger models and training strategies.

- Stronger models: larger capacity, advanced architectures *e.t.c*.
- Stronger strategies: auto augmentation, MixUp, AdamW optimizer, e.t.c.

Frustrating Performance of KD from a **Stronger Teacher:** We train the student with stronger teachers in vanilla KD (KL div.).

- Larger teachers: the ACCs of KD with R152 and R101 are lower than R34.
- Stronger strategies: the ACCs of KD with stronger strategies are even lower than standalone training.



## What makes stronger teachers ab-normal compared to baselines?

# **Knowledge Distillation from A Stronger Teacher**

Tao Huang<sup>1,2</sup> Shan You<sup>1</sup> Fei Wang<sup>3</sup> Chen Qian<sup>1</sup> Chang Xu<sup>2</sup> <sup>1</sup>SenseTime Research <sup>2</sup>School of Computer Science, Faculty of Engineering, The University of Sydney <sup>3</sup>University of Science and Technology of China Correspondence to: youshan@sensetime.com

## **Catastrophic Discrepancy with A Stronger Teacher**

By measuring the outputs of trained baseline and stronger models, we find that • It tends to be fairly challenging for the student to exactly match the teacher's outputs as

- their discrepancy becomes larger.
- would be larger.

The exact match in KL divergence seems way too overambitious and demanding when the discrepancy becomes large.

**Intuition:** Relax the match with relations.

## **Relaxed Match with DIST**



DIST replaces KL divergence with Pearson distance

 $d_{\rm p} = 1 - \rho_{\rm p}(\boldsymbol{u}, \boldsymbol{v})$ 

• When the teacher and student are trained with stronger strategies, their discrepancy

$$:= \frac{\operatorname{Cov}(\boldsymbol{u}, \boldsymbol{v})}{\operatorname{Std}(\boldsymbol{u})\operatorname{Std}(\boldsymbol{v})}.$$







### Experiments

#### **Baseline settings on ImageNet:**

| Stu. (Tea.)   | Tea.  | Stu.  | KD    | CRD   | Review | DIST  |
|---------------|-------|-------|-------|-------|--------|-------|
| Res18 (Res34) | 73.31 | 69.76 | 70.66 | 71.17 | 71.61  | 72.07 |
| MBV1 (Res50)  | 76.16 | 70.13 | 70.68 | 71.37 | 72.56  | 73.24 |

#### **Stronger teachers:**

**return** kd\_loss

| Tea.                | Stu.      | tea. | stu. | KD   | RKD  | SRRL | DIST |
|---------------------|-----------|------|------|------|------|------|------|
| Res50SB             | Res18     |      | 73.4 | 72.6 | 72.9 | 71.2 | 74.5 |
|                     | Res34     | QN 1 | 76.8 | 77.2 | 76.6 | 76.7 | 77.8 |
|                     | MBV2      | 00.1 | 73.6 | 71.7 | 73.1 | 69.2 | 74.4 |
|                     | Eff.B0    |      | 78.0 | 77.4 | 77.5 | 77.3 | 78.6 |
| Swin-L <sup>‡</sup> | ResNet-50 | 86.3 | 78.5 | 80.0 | 78.9 | 78.6 | 80.2 |
|                     | Swin-T    | 00.5 | 81.3 | 81.5 | 81.2 | 81.5 | 82.3 |

#### **Comparisons of training speed (batches /** second):

| KD    | RKD   | SRRL  | CRD  | DIST  |
|-------|-------|-------|------|-------|
| 14.28 | 11.11 | 12.98 | 8.33 | 14.19 |

#### **Pytorch implementation of DIST:**

```
import torch.nn as nn
def cosine_similarity(a, b, eps=1e-8):
    return (a * b).sum(1) / (a.norm(dim=1) * b.norm(dim=1) + eps)
def pearson_correlation(a, b, eps=1e-8):
    return cosine_similarity(a - a.mean(1).unsqueeze(1), b - b.mean(1).unsqueeze(1), eps)
def inter_class_relation(y_s, y_t):
    return 1 - pearson_correlation(y_s, y_t).mean()
def intra_class_relation(y_s, y_t):
    return inter_class_relation(y_s.transpose(0, 1), y_t.transpose(0, 1))
class DIST(nn.Module):
    def __init__(self, beta, gamma)
        super(DIST, self).__init__()
        self.beta = beta
        self.gamma = gamma
    def forward(self, z_s, z_t):
        y_s = z_s.softmax(dim=1)
        y_t = z_t.softmax(dim=1)
        inter_loss = inter_class_relation(y_s, y_t)
        intra_loss = intra_class_relation(y_s, y_t)
        kd_loss = self.beta * inter_loss + self.gamma * intra_loss
```