
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

DIST+: Knowledge Distillation from A Stronger
Teacher

Tao Huang, Shan You, Member, IEEE, Fei Wang, Chen Qian, Chang Xu, Senior Member, IEEE,

Abstract—The paper introduces DIST, an innovative knowledge distillation method that excels in learning from a superior teacher
model. DIST differentiates itself from conventional techniques by adeptly handling the often significant prediction discrepancies
between the student and teacher models. It achieves this by focusing on maintaining the relationships between their predictions,
implementing a correlation-based loss to explicitly capture the teacher’s intrinsic inter-class relations. Moreover, DIST uniquely
considers the semantic similarities between different instances and each class at the intra-class level. The method is further enhanced
by two significant improvements: (1) A teacher acclimation strategy, which effectively reduces the discrepancy between teacher and
student, thereby optimizing the distillation process. (2) An extension of the DIST loss from the logit level to the feature level, a
modification that proves especially beneficial for dense prediction tasks. DIST stands out for its simplicity, practicality, and adaptability
to various architectures, model sizes, and training strategies. It consistently delivers state-of-the-art results across a range of
applications, including image classification, object detection, and semantic segmentation. The methodology and results are detailed in
the paper, and the implementation code is available at https://github.com/hunto/DIST KD.

Index Terms—Knowledge distillation, Pearson correlation, image classification, object detection, semantic segmentation
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1 INTRODUCTION

THE advent of automatic feature engineering fuels deep
neural networks to achieve remarkable success in a

plethora of computer vision tasks, such as image classifica-
tion [1]–[5], object detection [6], [7], and semantic segmenta-
tion [8], [9]. In the path of pursuing better performance, cur-
rent deep learning models generally grow deeper and wider
[10], [11]. However, such heavy models are clumsy to deploy
in practice due to the limitations of computational and
memory resources. For an efficient model with competitive
performance to those larger models, knowledge distillation
(KD) [12] has been proposed to boost the performance of
the efficient model (student) by distilling the knowledge of
a larger model (teacher) during training.

The essence of knowledge distillation relies on how to
formulate and transfer the knowledge from teacher to stu-
dent. The most intuitive yet effective approach is to match
the probabilistic prediction (response) scores between the
teacher and student via Kullback–Leibler (KL) divergence
[12]. In this way, the student can be guided with more
informative signals during training, and is thus expected to
have more promising performance than that being trained
stand-alone. Besides this vanilla prediction match, other
works [13]–[16] also investigate the knowledge within in-
termediate representations to further boost the distillation
performance, but this usually induces additional training
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cost as a consequence. For example, OFD [13] proposes
to distill the information via multiple intermediate layers,
but requires additional convolutions for feature alignments;
CRD [15] introduces a contrastive loss to transfer pair-wise
relationships, but it needs to hold a memory bank for all
128-d features of ImageNet images, and produces additional
260M FLOPs of computation cost.

Recently, a few studies [17]–[19] have been performed to
address the poor learning issue of the student network when
the student and teacher model sizes significantly differ. For
example, TAKD [18] proposes to reduce the discrepancy of
teacher and student by resorting to an additional teaching
assistant of moderate model size; DGKD [19] further im-
proves TAKD by densely gathering all the assistant models
to guide the student. However, increasing the model size
is only one of the popular approaches to have a stronger
teacher. There lacks a thorough analysis on the training
strategies to derive a stronger teacher and their effect on
KD. Most importantly, a generic enough solution is pre-
ferred to address the difficulty of KD brought by stronger
teachers, rather than struggling to deal with different types
of stronger teachers (with larger model size or stronger
training strategy) individually.

To understand what makes a stronger teacher and their
effect on KD, we systematically study the prevalent strate-
gies for designing and training deep neural networks, and
show that:

• Beyond scaling up the model size, a stronger teacher
can also be derived through advanced training
strategies, e.g., label smoothing and data augmen-
tation [20]. However, given a stronger teacher, the
student’s performance on the vanilla KD could be
dropped, even worse than training from scratch
without KD, as shown in Figure 1.
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Figure 1. Comparisons of KD and our proposed DIST on ImageNet
with different teachers. (a) The ResNet-18 students are trained using
baseline strategy with different model sizes of the teacher. (b) The
ResNet-18 students are trained using different strategies with ResNet-
50 teachers.

• The discrepancy between teacher and student tends
to get fairly larger when we switch their training
strategy to a stronger one (see Figure 2). In this case,
an exact recovery of predictions via KL divergence
could be challenging and lead to the failure of vanilla
KD.

• Preserving the relation of predictions between teacher
and student is sufficient and effective. When trans-
ferring the knowledge from teacher to student, what
we really care about is preserving the preference
(relative ranks of predictions) by the teacher, instead
of recovering the absolute values accurately. Correla-
tion between teacher and student predictions could
be favored to relax the exact match of KL divergence
and distill the intrinsic relations.

In this paper, we thus leverage the Pearson correlation
coefficient [21] as a new match manner to replace the KL
divergence. In addition, besides the inter-class relations in
prediction vector (see Figure 3), with the intuition that
different instances have different spectrum of similarities
with respect to each class, we also propose to distill the
intra-class relations for further boosting the performance as
Figure 3. Concretely, for each class, we gather its corre-
sponding predicted probabilities of all instances in a batch,
then transfer this relation from teacher to student. Our
proposed method (dubbed DIST) is super simple, efficient,
and practical, which can be implemented with only several
lines of code (see Appendix ??) and has almost the same
training cost as the vanilla KD. As a result, the student can
be liberated from the burden of matching the exact output of
a strong teacher, but only be guided appropriately to distill
those truly informative relations.

A preliminary version of this work was presented earlier
[22], namely DIST. This journal version extends the initial
conference paper in multiple ways. First, we provide a
comprehensive analysis of the discrepancy between student
and stronger teacher, and find that the devil in KD from
a stronger teacher lies in the inconsistency of non-target
classes between teacher and student. We then design an
efficient way to alleviate this inconsistency by acclimating
the teacher’s predictions to align with the student’s, while
maintaining the original accuracy of the teacher for effective
distillation. Additionally, besides the logit-level distillation
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Figure 2. Discrepancy between the predictions of models trained stan-
dalone with different strategies on ImageNet validation set. (a) KL diver-
gence with temperature τ = 1. (b) KL divergence (τ = 4). R18B1 repre-
sents ResNet-18 trained with strategy B1. Details of training strategies
refer to Table 2.

loss in DIST, we extend the loss to the feature level, which
provides both pixel-level relational distillation and channel-
level relational distillation. Combining the logit-level and
feature-level distillation, our final method, dubbed DIST+,
achieves further improvement on various tasks, especially
on dense prediction tasks such as object detection.

Extensive experiments are conducted on benchmark
datasets to verify our effectiveness on various tasks, includ-
ing image classification, object detection, and semantic seg-
mentation. Experimental results show that our DIST signif-
icantly outperforms vanilla KD and those sophisticatedly-
designed state-of-the-art KD methods. For example, with
the same baseline settings on ImageNet, our DIST achieves
the highest 72.07% accuracy on ResNet-18. With the stronger
strategy, our method obtains 82.3% accuracy on the recent
transformer Swin-T [23], improving KD by 1%. As for
DIST+, we obtain further improvement of 0.32% on ResNet-
18 and 0.3% on Swin-T.

2 RELATED WORK

2.1 Bridging the Representation Gap in Knowledge
Distillation
Knowledge Distillation (KD), a method of transferring
knowledge from a larger, complex teacher model to a
smaller, more efficient student model, has seen significant
advancements recently. One emerging challenge is the rep-
resentation gap between these teacher and student models.
As models grow in complexity and performance, distill-
ing knowledge effectively becomes more intricate. Studies
like TAKD [18] and DAKD [19] reveal a counter-intuitive
finding: stronger teacher models do not always translate to
better KD performance. TAKD [18] suggest a capacity limit
for students learning from teachers, introducing the concept
of teaching assistants to bridge this gap. Sequential training
of assistants, each smaller than the last, culminates in a
final assistant that efficiently trains the student. Building on
this, Son et al. [19] propose DAKD, enhancing connectivity
between all involved models and allowing students to select
optimal teachers per sample. Park et al. [24] introduce a
different approach with SFTN, where the teacher model is
supervised by the student to minimize the representation
gap. While innovative, these methods face practical limita-
tions due to their complexity and computational demands.
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This paper offers a simpler and efficient solution using
correlation-based loss.

2.2 Advancements in KD for Dense Prediction Tasks

Dense prediction tasks like object detection and semantic
segmentation present unique challenges for KD, as they
require detailed predictions at the pixel level. Several meth-
ods have been proposed to enhance KD in these contexts.
Chen et al. [25] were pioneers in applying KD to object
detection, focusing on classification logits and regressions.
Li et al. [26] identified that feature maps in detection models
contain richer semantic information than responses, leading
to the distillation of FPN features. However, this approach
grapples with the imbalance of foreground and background
pixels. Recent methods have aimed to select valuable fea-
tures and develop tailored loss functions to address this
imbalance [27]–[32].

In semantic segmentation, KD techniques prioritize
maintaining structural semantic connections. He et al. [33]
utilize a pretrained autoencoder for optimizing feature simi-
larity in a latent space, alongside transferring non-local pair-
wise affinity maps. SKD [34] employs pairwise distillation
among pixels and adversarial distillation on score maps.
IFVD [35] focuses on transferring intra-class feature varia-
tion, while CWD [28] and CIRKD [36] introduce channel-
wise and relational distillations respectively.

Despite recent advancements, a major challenge per-
sists: state-of-the-art knowledge distillation (KD) methods
are often task-specific, hampering their generalizability and
incurring substantial experimental costs. To address this, we
extend our DIST approach to DIST+, incorporating feature-
level relational distillation. This enhancement proves to be
simple yet effective, particularly in dense prediction tasks.

3 REVISITING PREDICTION MATCH OF KD
In vanilla knowledge distillation [12], the knowledge is
transferred from a pre-trained teacher model to a student
model by minimizing the discrepancy between the predic-
tion scores of the teacher and student models.

Formally, with the logits Z(s) ∈ RB×C and Z(t) ∈ RB×C

of student and teacher networks, where B and C denote
batch size and the number of classes, respectively, the
vanilla KD loss [12] is represented as

LKD :=
τ2

B

B∑
i=1

KL
(
Y

(t)
i,: ,Y

(s)
i,:

)
=
τ2

B

B∑
i=1

C∑
j=1

Y
(t)
i,j log

(
Y

(t)
i,j

Y
(s)
i,j

)
,

(1)

where KL refers to Kullback–Leibler divergence with

Y
(s)
i,: = softmax

(
Z

(s)
i,: /τ

)
, Y

(t)
i,: = softmax

(
Z

(t)
i,: /τ

)
,

(2)

being the probabilistic prediction vectors, and τ is the tem-
perature factor to control the softness of logits.

In addition to the teacher’s soft targets in Equation (1),
KD [12] stated that it is beneficial to train the student
together with ground-truth labels, and the overall training

loss is composed of the original classification loss Lcls and
KD loss LKD, i.e.,

Ltr = αLcls + βLKD, (3)

where Lcls is usually the cross-entropy loss between the
predictions of student network and ground-truth labels, α
and β are factors for balancing the losses.

3.1 Catastrophic Discrepancy with A Stronger Teacher
As illustrated in Section 1, the effect of a teacher on KD
has not been sufficiently investigated, especially when the
performance of pre-trained teacher grows stronger, such
as with larger model size or being trained with more ad-
vanced and competing strategies, e.g., label smoothing, mix-
up [20], auto augmentations [37], etc. With this regard, as
Figure 2, we train ResNet-18 and ResNet-50 standalone with
strategy B1 and strategy B21, and obtain 4 trained models
(R18B1, R18B2, R50B1, and R50B2 with accuracies 69.76%,
73.4%, 76.13%, and 78.5%, respectively), then compare their
discrepancy using KL divergence (τ = 1 and τ = 4)
on the predicted probabilities Y . We have the following
observations:

• The outputs of ResNet-18 do not change much with
the stronger strategy compared to ResNet-50. This
implies that the representational capacity limits the
student’s performance, and it tends to be fairly chal-
lenging for the student to exactly match the teacher’s
outputs as their discrepancy becomes larger.

• When the teacher and student models are trained
with a stronger strategy, the discrepancy between
teacher and student would be larger. This indicates
that when we adopt KD with a stronger training
strategy, the misalignment between KD loss and
classification loss would be severer, thus disturbing
the student’s training.

As a result, the exact match (i.e., the loss reaches the
minimal if and only if the teacher and student outputs are
exactly identical) with KL divergence seems way too over-
ambitious and demanding since the discrepancy between
student and teacher can be considerably huge. Since the
exact match can be detrimental with a stronger teacher, our
intuition is to develop a relaxed manner for matching the
predictions between the teacher and student.

4 DIST: DISTILLATION FROM A STRONGER
TEACHER

4.1 Relaxed Match with Relations
The prediction scores indicate the teacher’s confidence (or
preference) over all classes. For a relaxed match of predic-
tions between the teacher and student, we are motivated to
consider what we really care about for the teacher’s output.
Instead of the exact probabilistic values, actually, during
inference, we are only concerned about their relations, i.e.,
relative ranks of predictions of teacher.

In this way, for some metric d(·, ·) with RC ×RC → R+,
the exact match can be formulated that d(a, b) = 0 if a = b

1. Training with B2 obtains higher accuracy compared to B1, e.g.,
73.4% (B2) vs. 69.8% (B1) on ResNet-18.
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Figure 3. Difference between our DIST and existing KD methods. Conventional KD matches the outputs of student (s ∈ R5) to teacher (t ∈ R5)
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and teacher separately, then transfer the teacher’s correlations to student. Our DIST proposes to maintain the inter-class and intra-class relations
between student and teacher. Inter-class relation: correlation between the predicted probabilistic distributions on each instance of teacher and
student. Intra-class relation: correlation of the probabilities of all the instances on each class.

for any two prediction vector as Y
(s)
i,: and Y

(t)
i,: in the KL

divergence of Equation (1). Then as a relaxed match, we can
introduce additional mappings ϕ(·) and ψ(·) with RC → RC

such that
d(ϕ(a), ψ(b)) = d(a, b),∀a, b (4)

Therefore, d(a, b) = 0 does not necessarily require a and
b should be exactly the same. Nevertheless, since we care
about the relation within a or b, the mappings ϕ and ψ
should be isotone and do not affect the semantic information
and inference result of the prediction vector.

With this regard, a simple yet effective choice for the iso-
tone mapping is the positive linear transformation, namely,

d(m1a+ n1,m2b+ n2) = d(a, b), (5)

where m1, m2, n1, and n2 are constants with m1 ×m2 > 0.
As a result, this match could be invariant under separate
changes in scale and shift for the predictions. Actually, to
satisfy the property Equation (5), we can thus adopt the
widely-used Pearson’s distance as the metric, i.e.,

dp(u,v) := 1− ρp(u,v). (6)

ρp(u,v) is the Pearson correlation coefficient between two
random variables u and v,

ρp(u,v) :=
Cov(u,v)

Std(u)Std(v)

=

∑C
i=1(ui − ū)(vi − v̄)√∑C

i=1(ui − ū)2
∑C

i=1(vi − v̄)2

(7)

where Cov(u,v) is the covariance of u and v, ū and Std(u)
denote the mean and standard derivation of u, respectively.

In this way, we can define the relation as correlation.
More specifically, and the original exact match in vanilla
KD [12] can thus be relaxed and replaced by maximizing
the linear correlation to preserve the relation of teacher and

student on the probabilistic distribution of each instance,
which we call inter-class relation. Formally, for each pair of
prediction vector Y

(s)
i,: and Y

(t)
i,: , the inter-relation loss can

be formulated as

Linter :=
1

B

B∑
i=1

dp
(
Y

(s)
i,: ,Y

(t)
i,:

)
. (8)

Some isotone mappings or metrics can also be used to
relax the match as Equation (4), such as cosine similarity
investigated empirically in Section 6.4; other more advanced
and delicate choices could be left as future work.

4.2 Better Distillation with Intra-relations

Besides the inter-class relation, where we transfer the re-
lation of multiple classes in each instance, the prediction
scores of multiple instances in each class are also infor-
mative and useful. This scores indicate the similarities of
multiple instances to one class. For instance, suppose we
have three images containing “cat”, “dog”, and “plane”,
respectively, and they have three prediction scores on the
‘cat’ class, denoted as e, f , and g. Generally, the picture “cat”
should have the largest score to the “cat” class, while the
“plane” should have the smallest score since it is inanimate.
This relation of “e > f > g” could also be transferred to the
student. Besides, even for the images from the same class,
the intrinsic intra-class variance of the semantic similarities
is actually also informative. It indicates the prior from the
teacher that which one is more reliable to cast in this class.

Therefore, we also encourage to distill this intra-relation
for better performance. Actually, define the prediction ma-
trix Y (s) and Y (t) with each row as Y (s)

i,: and Y
(t)
i,: , then the

above inter-relation is to maximize the correlation rowwise
(see Figure 3). In contrast, for intra-relation, the correspond-
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Figure 4. Statistics of the (a) target class consistency and (b) non-target
class consistency on ResNet-18 student. We compare the original pre-
dictions of teachers with our acclimated predictions on baseline teachers
(R34 and R101) and stronger teachers (R50-SB [38] and Swin-L).

ing loss is thus to maximize the correlation column-wisely,
i.e.,

Lintra :=
1

C

C∑
j=1

dp
(
Y

(s)
:,j ,Y

(t)
:,j

)
. (9)

As a result, the overall training loss Ltr of DIST can be
composed of the classification loss, inter-class KD loss, and
intra-class KD loss, i.e.,

Ltr = λ1Lcls + λ2Linter + λ3Lintra, (10)

where λ1, λ2, and λ3 are factors for balancing the losses.
In this way, via the relation loss, we have endowed the
student with freedom more or less to match the teacher
network’s output adaptively, thus boosting the distillation
performance to a great extent.

5 DIST+ FOR BETTER RELAXED MATCH

5.1 On the Essential Discrepancy with Stronger
Teacher

In the previously discussed DIST method, we redefined the
distillation process as a relaxed objective. This approach re-
quires the student model to match the teacher model’s pre-
dictions through relational correspondence. Building upon
this, DIST+ delves deeper into analyzing the internal re-
lationships within the predictions of both the teacher and
student models.

For classification tasks, accuracy is a common evaluation
metric. This metric typically involves ranking the predicted
probabilities, then checking if the class with the highest
predicted probability (top-1) matches the ground truth. To
assess the disparity between the student’s and teacher’s
predictions, we divide the rank vectors R of the predicted
probabilities Y into two categories: the ranks of the target
class P with dimensions [B, 1], and the ranks of the non-
target class ranks M with dimensions [B,C − 1]. We then
introduce two types of consistencies to quantify these dif-
ferences.

Target class consistency. This metric quantifies the ex-
tent to which the student and teacher models agree on the
ranks of the target class. It is expressed as the percentage of
samples for which both models assign the same rank to the

Table 1
Non-target class consistencies between distilled student and teachers

Method Baseline teacher Stronger teacher
R34 R101 R50-SB Swin-L

w/o KD 0.61 0.59 0.34 0.36
KL div. 0.67 0.63 0.40 0.39
DIST 0.73 0.66 0.45 0.48

target class. Formally, the Target Class Consistency (TC) is
defined as:

TC
(
P (s),P (t)

)
:=

1

B

B∑
i=1

1
(
P

(s)
i , P

(t)
i

)
, (11)

where 1 is an indicator function that yields 1 when P (s)
i and

P
(t)
i are equal, and 0 otherwise.

Non-target class consistency. As we have established,
for non-target classes, it is crucial to ascertain if the student
and teacher models maintain consistent rank relationships.
To evaluate this, we employ the Spearman’s rank correlation
coefficient as a measure of non-target class consistency. This
can be mathematically represented as:

NC
(
M (s),M (t)

)
:=

1

B

B∑
i=1

ρs
(
M

(s)
i ,M

(t)
i

)
, (12)

with ρ representing Spearman’s rank correlation, calculated
as

ρs(ra, rb) :=
Cov(ra, rb)

Std(ra),Std(rb)
, (13)

where ra and rb are rank vectors, Cov represents the co-
variance between these rank vectors, and Std denotes the
standard derivation.

In Figure 4, we assess target and non-target class con-
sistencies using the independently-trained ResNet-18 as the
student and various pretrained models as teachers. The pre-
dictions on the ImageNet validation set are used to calculate
these consistencies, as indicated by the Origin legend in the
figure. Our analysis yields two key insights:

• High target class consistency across teachers: Both
sets of teachers — those trained with the baseline
strategy (R34 and R101) and those with the stronger
strategy (R50-SB [38] and Swin-L) — demonstrate
high target class consistency with the student model.
This observation implies that the decrease in knowl-
edge distillation performance observed with stronger
teachers is likely not due to discrepancies in target
class predictions.

• Significant disparity in non-target class consis-
tency: A pronounced difference is evident in the
non-target class consistency between baseline and
stronger teachers. For example, the non-target class
consistency is recorded at 0.61 for the R34 teacher,
but only 0.34 for the R50-SB teacher. This substantial
divergence suggests that the differences between the
student and stronger teachers in non-target class
predictions may mislead the optimization process in
knowledge distillation, leading to diminished perfor-
mance.
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Consequently, to optimize the effectiveness of knowl-
edge distillation, it is crucial to address the discrepancies
in the non-target class predictions between the teacher and
student models.

5.2 How Much Does Student Learn from the Non-target
Classes?

KD methods applied to classification logits frequently in-
volve distillation focusing on non-target classes. A pertinent
question arises: Does this type of supervision aid in reducing
the discrepancy between the student and stronger teachers in
terms of non-target class predictions? Contrary to what one
might expect, our findings indicate a negative response
to this query. As detailed in Table 1, we evaluated the
non-target class consistency between the distilled student
models and their respective teachers. Both the traditional
approach using KL divergence in vanilla KD and our DIST
method seem insufficient in narrowing the gap for non-
target classes between student and teacher models. Even
after distillation, the consistency levels with stronger teach-
ers remain substantially lower compared to those with
baseline teachers. This persistent discrepancy could be due
to the student model’s limited capacity in assimilating the
complex information from the more advanced teachers.

Given the notable discrepancy observed in non-target
class predictions and the challenges inherent in mitigating
it, a question arises: Is it feasible to omit distillation on non-
target classes and focus solely on learning from the teacher’s
target class predictions? Recent research, such as DKD [39],
however, indicates that relying exclusively on target class
knowledge distillation (TCKD) may be counterproductive.
It suggests that TCKD alone might not only be unhelpful
but could potentially impair performance. The distillation of
non-target class information (NCKD) is deemed crucial for
the effective transfer of knowledge from a superior teacher
model. Therefore, to enhance knowledge distillation from
stronger teachers, it becomes imperative to improve both
the non-target class consistency and the overall distillation
process for non-target classes.
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Figure 6. Illustration of channel relation and feature relation in DIST+.

5.3 Acclimating Teacher from Student

In a fortunate turn, our research has led to an intriguing
insight. Although students face significant challenges in
assimilating the non-target class preferences from stronger
teachers, we have discovered a promising avenue. As shown
in Figure 4, we fine-tune the last backbone layer and head in
teacher models using our proposed acclimation loss (which
will be introduced later), and gain significant increments on
non-target class-consistency. It appears that these stronger
teachers can be effectively adjusted to provide non-target
class predictions that are more conducive to student learn-
ing. Remarkably, this adaptation can be achieved with min-
imal impact on the overall accuracy of the teacher model.

This discovery opens up a new dimension in the field
of knowledge distillation. Recognizing the possibility of
modifying stronger teachers to align better with student
models, we explore a methodical approach to facilitate this
adaptation. Our strategy focuses on fine-tuning specific
components of the teacher model, using the student’s pre-
dictions as a guiding framework. This approach is grounded
in the understanding that slight adjustments in key areas of
the teacher model can significantly enhance the student’s
learning process. By doing so, we aim to harmonize the
teacher’s expertise with the student’s learning capacity,
particularly in the context of non-target class predictions.

In our approach, we begin by initializing the teacher
model with its pretrained weights. The key step involves
fine-tuning the last convolution layer and classification head
of the teacher model, guided by the student’s predictions
during the distillation process. This fine-tuning is criti-
cal for aligning the teacher’s non-target class probabilities
with those of the student. Formally, let E(t) represent the
teacher’s non-target class probabilities and E(s) denote the
corresponding probabilities from the student, both having
the shape [B,C − 1]. The acclimation process is designed
to modify the teacher model so that its non-target class
relationships mirror those of the student. This alignment is
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Table 2
Training Strategies on Image Classification Tasks. BS: batch size; LR: learning rate; WD: weight decay; LS: label smoothing; EMA: model

exponential moving average; RA: RandAugment [37]; RE : random erasing; CJ: color jitter

Strategy Dataset Epochs Total
BS

Initial
LR Optimizer WD LS EMA LR scheduler Data augmentation

A1 CIFAR-100 240 64 0.05 SGD 5× 10−4 - - ×0.1 at 150,180,210 epochs crop + flip

B1 ImageNet 100 256 0.1 SGD 1× 10−4 - - ×0.1 every 30 epochs crop + flip
B2 ImageNet 450 768 0.048 RMSProp 1× 10−5 0.1 0.9999 ×0.97 every 2.4 epochs {B1} + RA + RE
B3 ImageNet 300 1024 5e-4 AdamW 5× 10−2 0.1 - cosine {B2} + CJ + Mixup + CutMix

Table 3
Evaluation results of baseline settings on ImageNet. We use ResNet-34 and ResNet-50 released by Torchvision [40] as our teacher networks, and

follow the standard training strategy (B1).

Student (teacher) Teacher Student KD [12] OFD [13] CRD [15] SRRL [41] Review [42] DIST DIST+

ResNet-18 (ResNet-34)
Top-1 73.31 69.76 70.66 71.08 71.17 71.73 71.61 72.07 72.39
Top-5 91.42 89.08 89.88 90.07 90.13 90.60 90.51 90.42 90.67

MobileNet (ResNet-50)
Top-1 76.16 70.13 70.68 71.25 71.37 72.49 72.56 73.24 73.47
Top-5 92.86 89.49 90.30 90.34 90.41 90.92 91.00 91.12 91.22

quantified using Pearson’s distance, as described in Equa-
tion (6), specifically:

Lta :=
1

B
dp
(
E(s),E(t)

)
. (14)

This equation represents the loss function used to acclimate
the teacher model, thereby optimizing it to produce non-
target class predictions that are more in sync with the
student’s learning pattern.

We implement the acclimation of the teacher model
during the distillation process. Specifically, as shown in
Figure 5, in each iteration, we utilize the predictions from
both the teacher and student models to compute the teacher
acclimation loss function Lta. This loss is then used to gen-
erate gradients that are backpropagated exclusively through
the teacher model. It’s important to note that the gradients
generated by Lta are not employed in optimizing the stu-
dent model. Instead, their sole purpose is to fine-tune the
teacher model, ensuring that it becomes more conducive to
the student’s learning process.

5.4 Feature-level Relaxed Relation Match

In our described method, KD is conducted through an
analysis and harmonization of the relationships in teacher
and student predictions. However, it is widely recognized
that intermediate features, as opposed to merely predicted
probabilities, harbor richer information which can lead to
a more nuanced and effective distillation process [15], [30],
[42], [43]. In DIST+, we expand our approach from logit-
level distillation to include feature-level distillation. Our
findings indicate that incorporating feature-level relation-
ships effectively enhances the performance of the distilla-
tion.

In the realm of feature distillation, we identify and utilize
two key axes of relationships: channel relation and spatial
relation. As illustrated in Figure 6, channel relation focuses
on transferring the inter-channel dynamics from the teacher

model to the student model. In contrast, spatial relation
deals with aggregating responses across channels to capture
the overall spatial response patterns, which are then trans-
ferred from the teacher to the student. This dual approach
ensures that both the nuanced inter-channel interactions and
the broader spatial response patterns are effectively distilled
into the student model.

Mathematically, we define F (t) as the feature map used
for distillation in the teacher model, and F (s) as the cor-
responding feature map in the student model. Both feature
maps share the same dimensional structure, represented as
[B,D,H,W ], where D denotes the channel dimension, and
H and W represent the height and width of the feature
map, respectively. The computation of the two distinct types
of feature relations, channel relation and spatial relation, is
carried out based on these feature maps.

Channel relation loss. The channel relation loss is com-
puted using the Pearson distance across the channel dimen-
sion:

Lcr :=
1

BHW

B∑
i=1

H∑
j=1

W∑
k=1

dp
(
F

(s)
i,:,j,k,F

(t)
i,:,j,k

)
. (15)

Spatial relation loss. The spatial relation loss, on the
other hand, is computed on the aggregated feature across
the spatial dimension. First, we aggregate each feature
map over the channel dimension and then reshape these
aggregated features into F̂ (s) and F̂ (t), each with the shape
[B,HW ]. The spatial relation loss is then calculated as

Lsr :=
1

B

B∑
i=1

dp
(
F̂

(s)
i , F̂

(t)
i

)
. (16)

This approach ensures a comprehensive alignment of the
student’s feature map with that of the teacher, both in terms
of channel-wise relationships and overall spatial patterns.
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Table 4
Performance of ResNet-18 and ResNet-34 on ImageNet with different

sizes of teachers

Student Teacher Top-1 ACC (%)

student teacher KD DIST DIST+

ResNet-18

ResNet-34

69.76

73.31 71.21 72.07 72.39
ResNet-50 76.13 71.35 72.12 72.46
ResNet-101 77.37 71.09 72.08 72.43
ResNet-152 78.31 71.12 72.24 72.55

ResNet-34
ResNet-50

73.31
76.13 74.73 75.06 75.23

ResNet-101 77.37 74.89 75.36 75.48
ResNet-152 78.31 74.87 75.42 75.57

As a result, the overall loss function for training the
student in DIST+ is as follows:

Ltr = λ1Lcls + λ2Linter + λ3Lintra + λ4Lcr + λ5Lsr, (17)

where λ is the loss weight for balancing the losses.

6 EXPERIMENTS

6.1 Image Classification

Settings. Training strategies. The training strategies of im-
age classification task are summarized in Table 2. CIFAR-
100. For fair comparisons, we use the same training strate-
gies (referred to A1 in Table 2) and pretrained models
following CRD [15]. ImageNet. B1: for comparisons with
previous KD methods, we train our baselines with the same
simple training strategy as CRD [15]. B2: to validate the
effectiveness of KD methods on modern training strategies,
we follow EfficientNet [44] and design a training strategy
B2, which can significantly improve the performance com-
pared to B1. B3: the strategy B3 is used for training Swin-
Transformers [23], and contains even more stronger data
augmentations and regularization.

Loss weights. On CIFAR-100 and ImageNet, we set
λ1 = 1, λ2 = 2, and λ3 = 2 in Eq.(10) for DIST, and
additional λ4 = λ5 = 1 for DIST+. On object detection and
semantic segmentation, these factors are all equal to 1. For
KD [12], we set α = 0.9, β = 1 in Eq.(3), and use a default
temperature τ = 4. Specifically, instead of using τ = 1 on
ImageNet, we choose a larger temperature τ = 4 on CIFAR-
100, as it is easy to get overfit and the learned probabilistic
distribution is sharp on CIFAR-100.

Baseline results on ImageNet. We first compare our
method with prior works using the baseline settings. As
shown in Table 3, our DIST and DIST+ significantly outper-
forms prior KD methods. Note that our method is only con-
ducted on the outputs of models, and has a similar compu-
tational cost as KD [12]. Nevertheless, it even achieves better
performance compared to those sophisticatedly-designed
methods. For example, CRD [15] needs to preserve a
memory bank for all 128-d features of ImageNet images,
and produces additional 260M FLOPs of computation cost;
SRRL [41] and Review [42] require additional convolutions
for feature alignments.

Distillation from stronger teacher models. As the
stronger teachers come from larger model sizes and stronger
strategies, we here first conduct experiments to compare our

Table 5
Top-1 accuracies (%) of students trained with strong strategies on

ImageNet. The Swin-T is trained with strategy B3 in Table 2, others are
trained with B2. ResNet-50 and Swin-L teachers have 80.1% and
86.3% accuracies, respectively. †: trained by [38]. ‡: Pretrained on

ImageNet-22K

Teacher Student w/o KD KD RKD SRRL DIST DIST+

ResNet-50†
ResNet-18 73.4 72.6 72.9 71.2 74.5 74.8
ResNet-34 76.8 77.2 76.6 76.7 77.8 78.0
MobileNetV2 73.6 71.7 73.1 69.2 74.4 74.7
EfficientNet-B0 78.0 77.4 77.5 77.3 78.6 78.7

Swin-L‡ ResNet-50 78.5 80.0 78.9 78.6 80.2 80.4
Swin-T 81.3 81.5 81.2 81.5 82.3 82.6

DIST with the vanilla KD on different scales (model sizes)
of ResNets with baseline strategy B1. As shown in Table 4,
when the teacher goes larger, the ResNet-18 students per-
form even worse than that with a medium-sized ResNet-
50 teacher. Nevertheless, our DIST shows an upward trend
with larger teachers, and the improvements compared to
KD also become more significant, indicating that our DIST
tackles better on the large discrepancy between the student
and larger teacher.

Distillation from stronger training strategies. Recently,
the performance of models on ImageNet has been signif-
icantly improved by the sophisticated training strategies
and strong data augmentations (e.g., TIMM [38] achieves
80.4% accuracy on ResNet-50 while the baseline strategy
B1 only obtains 76.1%). However, most of the KD methods
still conduct experiments with simple training settings. It is
seldomly investigated whether the KD methods are suitable
to the advanced strategies. In this way, we conduct exper-
iments with advanced training strategies and compare our
method with vanilla KD, instance relation-based RKD [45],
and SRRL [41].

We first train traditional CNNs with strong strategies,
and also use a strong ResNet-50 with 80.1% accuracy trained
by [38] as the teacher. As results shown in Table 5, on both
similar architectures (ResNet-18, ResNet-34) and dissimilar
architectures (MobileNetV2, EfficientNet-B0), our DIST can
achieve the best performance. Note that RKD and SRRL
can perform worse than training from scratch, especially
when the students are small (ResNet-18 and MobileNet) or
the architectures of teacher and student are fairly different
(ResNet-50 and Swin-L), this might be because they focus on
the intermediate features, which can be more challenging
for the student to recover teacher’s features compared to
predictions.

Furthermore, we experiment on the recent state-of-the-
art Swin-Transformer [23]. The results show that our DIST
gains improvements on even more stronger models and
strategies. For example, with Swin-L teacher, our method
improves ResNet-50 and Swin-T by 1.7% and 1.0%, re-
spectively. Moreover, the extended version, DIST+, achieves
significant improvements compared to DIST. This demon-
strates the effects of DIST+ with teacher acclimation and
feature-level relaxed distillation loss.

CIFAR-100. The results on CIFAR-100 dataset in Table 6
show that, by distilling on the predicted logits, our DIST
outperforms most of the sophisticatedly-designed feature
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Table 6
Evaluation results on CIFAR-100 dataset. The upper and lower models denote teacher and student, respectively. Results of the compared

methods are reported by CRD [15]

Method
Same architecture style Different architecture style

WRN-40-2
WRN-40-1

ResNet-56
ResNet-20

ResNet-32x4
ResNet-8x4

ResNet-50
MobileNetV2

ResNet-32x4
ShuffleNetV1

ResNet-32x4
ShuffleNetV2

Teacher 75.61 72.34 79.42 79.34 79.42 79.42
Student 71.98 69.06 72.50 64.6 70.5 71.82

FitNet [46] 72.24±0.24 69.21±0.36 73.50±0.28 63.16±0.47 73.59±0.15 73.54±0.22
CC [14] 72.21±0.25 69.63±0.32 72.97±0.17 65.43±0.15 71.14±0.06 71.29±0.38
VID [47] 73.30±0.13 70.38±0.14 73.09±0.21 67.57±0.28 73.38±0.09 73.40±0.17
RKD [45] 72.22±0.20 69.61±0.06 71.90±0.11 64.43±0.42 72.28±0.39 73.21±0.28
PKT [48] 73.45±0.19 70.34±0.04 73.64±0.18 66.52±0.33 74.10±0.25 74.69±0.34
AB [13] 72.38±0.31 69.47±0.09 73.17±0.31 67.20±0.37 73.55±0.31 74.31±0.11
FT [49] 71.59±0.15 69.84±0.12 72.86±0.12 60.99±0.37 71.75±0.20 72.50±0.15
CRD [15] 74.14±0.22 71.16±0.17 75.51±0.18 69.11±0.28 75.11±0.32 75.65±0.10
KD [12] 73.54±0.20 70.66±0.24 73.33±0.25 67.35±0.32 74.07±0.19 74.45±0.27
DIST 74.73±0.24 71.75±0.30 76.31±0.19 68.66±0.23 76.34±0.18 77.35±0.25
DIST+ 74.82±0.27 72.01±0.23 76.19±0.36 68.72±0.15 76.55±0.35 77.28±0.33

Table 7
Results on COCO validation set. T: teacher; S: student. *: We

implement KD using τ = 1 and other settings are the same as DIST

Method AP AP50 AP75 APS APM APL

Two-stage detectors
T: Cascade Mask RCNN-X101 45.6 64.1 49.7 26.2 49.6 60.0
S: Faster RCNN-R50 38.4 59.0 42.0 21.5 42.1 50.3
KD [12]∗ 39.7 61.2 43.0 23.2 43.3 51.7
FKD [50] 41.5 62.2 45.1 23.5 45.0 55.3
CWD [28] 41.7 62.0 45.5 23.3 45.5 55.5
DIST 40.4 61.7 43.8 23.9 44.6 52.6
DIST + mimic 41.8 62.4 45.6 23.4 46.1 55.0
DIST+ 42.1 62.6 46.2 23.6 46.4 55.2

One-stage detectors
T: RetinaNet-X101 41.0 60.9 44.0 23.9 45.2 54.0
S: RetinaNet-R50 37.4 56.7 39.6 20.0 40.7 49.7
KD [12]∗ 37.2 56.5 39.3 20.4 40.4 49.5
FKD [50] 39.6 58.8 42.1 22.7 43.3 52.5
CWD [28] 40.8 60.4 43.4 22.7 44.5 55.3
DIST 39.8 59.5 42.5 22.0 43.7 53.0
DIST + mimic 40.1 59.4 43.0 23.2 44.0 53.6
DIST+ 41.0 60.3 43.7 23.3 44.6 55.1

distillation methods. While the extended version with fea-
ture distillation, DIST+, achieves an overall better perfor-
mance than the logits-only DIST.

6.2 Object Detection

Settings. We further investigate the effectiveness of DIST on
downstream tasks. We conduct experiments on MS COCO
object detection dataset [52], and simply leverage our DIST
as an additional supervision on the final predictions of
classes.

Training strategies. Following [28], [50], we use the
same standard training strategies (the official 2× schedule
in MMDetection [53]) and utilize Cascade Mask R-CNN [7]
with ResNeXt-101 backbone as the teacher for two-stage stu-
dent of Faster R-CNN [6] with ResNet-50 backbone; while
for one-stage RetinaNet [54] with ResNet-50 backbone, the
RetinaNet with ResNeXt-101 backbone is utilized as the
teacher. All loss weights of KD are set to 1.

Table 8
Results on Cityscapes val dataset. All models are pretrained on

ImageNet

Method mIoU (%)

T: DeepLabV3-R101 78.07

S: DeepLabV3-R18 74.21
SKD [51] 75.42
IFVD [35] 75.59
CWD [28] 75.55
CIRKD [36] 76.38
DIST 77.10
DIST+ 77.36

S: PSPNet-R18 72.55
SKD [51] 73.29
IFVD [35] 73.71
CWD [28] 74.36
CIRKD [36] 74.73
DIST 76.31
DIST+ 76.52

As shown in Table 7, our DIST achieves competitive re-
sults on COCO validation set. For comparisons, we train the
vanilla KD under the same settings as our DIST, the results
show that our DIST significantly outperforms vanilla KD by
simply replacing the loss functions. Moreover, by combining
DIST with mimic, which minimizes the mean square error
between FPN features of teacher and student, we can even
outperform the state-of-the-art KD methods designed for
object detection. Note that by conducting feature distillation
in our DIST+, we achieve further improvements compared
to DIST + mimic. For instance, we obtain 42.1 AP on Faster-
RCNN ResNet-50 student, significantly improving without-
KD baseline by 3.7.

6.3 Semantic Segmentation
Settings. We also perform experiments on semantic segmen-
tation, a challenging dense prediction task. Following [28],
[35], [36], we train DeepLabV3 [55] and PSPNet [8] with
ResNet-18 backbone on Cityscapes dataset, and adopt our
DIST on the predictions of classification head using a teacher
with ResNet-101 backbone of DeepLabV3.
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Table 9
Ablation of inter-class and intra-class relations on ImageNet. The

student and teacher models are ResNet-18 and ResNet-34,
respectively

Method Inter Intra ACC (%)

KD - - 71.21
DIST (KL div.) p ✓ 70.61
DIST (KL div.) ✓ ✓ 71.62

DIST ✓ p 71.63
DIST p ✓ 71.55
DIST ✓ ✓ 72.07

Table 10
Comparisons of training KD with or without the classification loss on

ImageNet. The student and teacher models are ResNet-18 and
ResNet-34, respectively. The original accuracy of ResNet-18 without

KD is 69.76%

Method w/ cls. loss w/o cls. loss

KD 71.21 68.12
DIST 72.07 70.65

Training strategies. Following CIRKD [36], we adopt
a standard data augmentation, which consists of random
flipping, random scaling in the range of [0.5, 2], and a
crop size of 512 × 1024. We train the models using an
SGD optimizer with a momentum of 0.9, and a polynomial
annealing learning rate scheduler is adopted with an initial
value of 0.02. We train the mask tokens for 2000 iterations
in the mask learning stage, and then train the student for
40000 iterations. All the loss weights in KD are set to 1.

As the results summarized in Table 8, with only the
supervision of class predictions, our DIST can significantly
outperform existing knowledge distillation methods on se-
mantic segmentation task. For example, our DIST outper-
forms recent state-of-the-art method CIRKD [36] by 1.58%
on PSPNet-R18. This demonstrate our effectiveness on re-
lation modeling. Furthermore, the improved DIST+, with
feature distillation, further outperforms DIST by 0.26% on
DeepLabV3-R18 student.

6.4 Ablation Studies

Effects of inter-class and intra-class correlations. This
paper proposes two types of relations: inter-class and intra-
class relations. To validate the effectiveness of each rela-
tion, we conduct experiments to train students with these
relations separately. The results on Table 9 verify that,
both inter-class and intra-class relations can outperform the
vanilla KD; also, the performance could be further boosted
by combining them together.

Effect of intra-class relation in vanilla KD. To investi-
gate the effectiveness of intra-class relation in vanilla KD, we
adopt experiments to train our DIST using KL divergence
as the relation metric, denoted as DIST (KL div.)2. As the
results summarized in Table 9, adding intra-class relation
in the vanilla KD can also improve the performance (from
71.21% to 71.62%). However, when the student is trained

2. Specifically, the vanilla KD is the same as DIST (KL div.) with inter-
class relation only.
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Figure 7. (a) Inter-class correlation and (b) intra-class correlation be-
tween ResNet-18 student and ResNet-34 teacher. We train the methods
on ImageNet with B1 strategy.

with intra-class relation only, the improvement of using KL
divergence is less significant than using Pearson correlation
(70.61% vs. 71.55%), since the means and variances of intra-
class distributions could be varied.

Effect of training students with KD loss only. Training
student with only the KD loss can better reflect the distil-
lation ability and the information richness of supervision
signals. As results in Table 10 show that, when the student
is trained with only the KD loss, our DIST significantly
outperforms the vanilla KD. Without using the ground-
truth labels, it can even outperform the standalone training
accuracy, which indicates the effectiveness of our DIST in
distilling those truly-beneficial relations.

Correlations between teacher and student. To validate
the effectiveness of our correlation-based loss, we measure
the correlations between teacher and student models, where
the student models are trained by plain classification loss,
KD, and our DIST. We choose commonly used Pearson cor-
relation coefficient, Spearman’s [56] and Kendall’s Tau [57]
rank correlation coefficients as the metrics of correlation. As
summarized in Figure 7, our DIST obtains higher inter-class
and intra-class correlations compared to baselines.

Using cosine similarity in DIST. In our method, the
relation matching can be any function with the same form
of Eq.(4). We simply adopt a commonly used Pearson cor-
relation as our relation metric in DIST. Here we conduct
experiments to investigate the efficacy of our method with
cosine similarity.

Both cosine similarity and Pearson correlation coefficient
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Table 11
Ablation of cosine similarity and Pearson correlation in DIST. We train
the student ResNet-18 and teacher ResNet-34 on ImageNet with or

without label smoothing (LS)

Method w/o LS w/ LS

Teacher 73.31 73.78
KD (τ = 4) 71.21 70.71
KD (τ = 1) 71.49 71.37
DIST (cosine) 71.79 71.63
DIST (Pearson) 72.07 72.18

73.31

76.13
77.37

78.31
80.1

86.3

73.23

75.97
77.22
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Figure 8. Top-1 accuracies of teachers before and after acclimation.

can evaluate the relations between teacher and student.
Compared to the scale invariance in cosine similarity, the
Pearson correlation has an additional shift-invariance by
centering the vectors first (see Eq.(7)), and it could be
more robust to the distribution changes. We conduct exper-
iments to compare these two metrics in our DIST and train
the models with or without label smoothing. Since recent
studies [58], [59] state that KD with high temperatures is
incompatible with label smoothing, we also train the models
with KD (τ = 1). As shown in Table 11, adopting DIST with
Pearson correlation achieves higher accuracies compared to
KD and DIST with cosine similarity, especially when the
teacher and student are trained with label smoothing (the
predicted probabilistic distributions would be shifted by it).
As a result, the scale-and-shift-invariant Pearson correlation
may be a better metric for measuring relations in DIST.

6.5 Further Ablation Studies for DIST+
Performance comparison of teachers before and af-

ter acclimation. In Figure 8, we summarize the accuracy
changes of teachers in Table 4 and Table 5 after acclimation.
We can infer that, though the non-target consistencies of
them improve significantly after acclimation (see Figure 4),
there are only minor accuracy drops. This indicates that the
more powerful teachers are easy to adapt student predic-
tions. Besides, the teacher accuracy drops are negilible and
our DIST+ can obtain better distillation performance.

Effects of losses in DIST+. In DIST+, we propose
teacher acclimation loss Lta for aligning the teacher from the
student, channel relation loss Lcr and spatial relation loss
Lsr to conduct relaxed match in intermediate features. We

Table 12
Ablation of the proposed losses in DIST+. The student and teacher

models are ResNet-18 and ResNet-34, respectively

Method Lta Lcr Lsr ACC (%)

KD - - - 71.21
DIST - - - 72.07

DIST+ ✓ p p 72.21
DIST+ p ✓ p 72.25
DIST+ p p ✓ 72.19
DIST+ p ✓ ✓ 72.30
DIST+ ✓ ✓ ✓ 72.39

Table 13
Ablation of the loss in teacher acclimation. The student and teacher

models are ResNet-18 and ResNet-34, respectively

Acclimation Teacher ACC (%) Student

loss before after ACC (%)

w/o acclimation 73.31 73.31 72.30

KL divergence 73.31 71.03 70.67
Pearson distance 73.31 72.89 72.18

Lta 73.31 73.23 72.39

conduct experiments to validate the effects of each loss in-
dependently. As shown in Table 12, all the losses contribute
to performance increments compared to the original DIST.
Moreover, by combining them together, our resulting DIST+
performs the best.

Ablation study on teacher acclimation loss. This paper
proposes a novel teacher acclimation loss Lta that aims to
optimize the teacher’s non-target class predictions by align-
ing their correlations with the student’s non-target class
predictions, as we find the essential discrepancy between
the teacher prediction and student prediction is mostly come
from the non-target classes. Here we conduct experiments to
show the efficacy of Lta in comparisons with KL divergence
(element-wisely reconstruct predictions in all classes) and
Pearson distance (optimize the correlations in all classes).

As the results summarized in Table 13, adapting the
teacher with KL divergence causes significant performance
drops on both teacher accuracy and student accuracy, show-
ing that the hard restriction of KL divergence will destroy
the intrinsic preferences in teacher predictions, which are
vital for achieving high accuracy. On the other hand, directly
aligning the whole predictions has slight influences on
teacher accuracy and student accuracy, as the student model
has lower accuracy, and forcing the teacher predictions on
target class to match the student’s can decrease the teacher
accuracy. In contrast, our Lac, which aligns the non-target
classes only, can reduce the teacher-student discrepancy
while retaining a similar accuracy. As a result, acclimation
with our Lac obtains the best distillation performance.

Ablation study on loss weights. We elaborate exper-
iments to tune the hyperparameters of loss weights. For
simplicity, we keep the weights of logits distillation loss
(λ2 and λ3) the same, and so do λ4 and λ5 for feature
distillation loss. As shown in Table 14, for DIST with logits
distillation only, setting λ2 = λ3 = 2 achieves a better
balance between task loss and distillation loss. While for
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Table 14
Effects of different loss weights in DIST+. The student and teacher

models are ResNet-18 and ResNet-34, respectively

Method Task Logits Feature ACC (%)
λ1 λ2 λ3 λ4 λ5

DIST 1 1 1 0 0 71.85
DIST 1 2 2 0 0 72.07
DIST 1 4 4 0 0 72.02

DIST+ 1 2 2 0.5 0.5 72.21
DIST+ 1 2 2 1 1 72.39
DIST+ 1 2 2 2 2 72.31
DIST+ 1 2 2 4 4 72.27

Table 15
Average training speed (batches / second) of training ResNet-18

student with ResNet-34 teacher on ImageNet using strategy B1. The
speed is tested based on our implementations on 8 NVIDIA V100

GPUs

KD RKD SRRL CRD DIST DIST+
[12] [45] [41] [15]

14.28 11.11 12.98 8.33 14.19 13.42

the DIST+ combining both logits and feature distillations,
smaller feature distillation loss weights λ4 = λ5 = 1 are
more beneficial to the performance.
6.6 Comparisons of training speed

We compare the training speed of our DIST with vanilla
KD [12], RKD [45], CRD [15], and SRRL [41], as summarized
in Table 15. Our DIST has almost the same highest training
speed as the vanilla KD, outperforming other feature-based
KD methods. While the DIST+ can achieve better perfor-
mance with a marginal decrease of training efficiency.

7 CONCLUSION

This paper presents a new knowledge distillation (KD)
method named DIST to implement better distillation from
a stronger teacher. We empirically study the catastrophic
discrepancy problem between the student and a stronger
teacher, and propose a relation-based loss to relax the ex-
act match of KL divergence in a linear sense. To further
enhance the capability of distillation on stronger teachers,
we extend DIST to a new variant DIST+, which introduces a
novel teacher acclimation mechanism to narrow the teacher-
student gap and a feature-level relaxed distillation loss. Our
method DIST and DIST+ is simple yet effective in handling
strong teachers. Extensive experiments show our superiority
in various benchmark tasks.
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