

Tao Huang¹, Yuan Zhang³, Mingkai Zheng¹, Shan You², Fei Wang⁴, Chen Qian², Chang Xu¹ ¹The University of Sydney ²SenseTime Research ³Peking University ⁴University of Science and Technology of China

Distillation on denoised student features with simple losses such as MSE.

Innovations

- Lightweight diffusion model with linear autoencoder. \bullet
- Adaptive noise matching for precise denoising. \bullet

Effectiveness

- Applicable to various feature types. •
- Superior performance in multiple tasks and settings.

Knowledge Diffusion for Distillation

- Bottleneck blocks.
- Trained with teacher features.
- Leveraged for denoising student features.

Experiments

Noise Adapter -student feature*Z*^(stu) Bottleneck Gaussian noise Avg Pool FC $\times (1 - \gamma)$

noised feature $Z_T^{(s)}$

Noise Adapter

- Addresses the challenge of inexact noisy levels in student features.
- Measures the noisy level of feature.
- Complements additional Gaussian noise to feature to match the noisy level.

ImageNet

nageN	et						†: with	adva	nced D	IST loss
dent (teacher)		Tea.	Stu.	KD [13]	Review [6]	DKD [50]	DIST [16]	MSE	DiffKD	$\operatorname{DiffKD}^{\dagger}$
R (D34)	Top-1	73.31	69.76	70.66	71.61	71.70	72.07	70.58	72.22	72.49
5 (K 54)	Top-5	91.42	89.08	89.88	90.51	90.41	90.42	89.95	90.64	90.71
$\mathbf{W}1$ (P50)	Top-1	76.16	70.13	70.68	72.56	72.05	73.24	72.39	73.62	73.78
V I (K 50)	Top-5	92.86	89.49	90.30	91.00	91.05	91.12	90.74	91.34	91.48

ImageNet with Stronger Teachers

cher	Student	Top-1 ACC (%)							
	Student	Tea.	Stu.	KD [13]	RKD [30]	SRRL [46]	DIST [16]	DiffKD	
	ResNet-34		76.8	77.2	76.6	76.7	77.8	78.1	
sNet-50	MobileNetV2	80.1	73.6	71.7	73.1	69.2	74.4	74.9	
	EfficientNet-B0		78.0	77.4	77.5	77.3	78.6	78.8	
in I	ResNet-50	863	78.5	80.0	78.9	78.6	80.2	80.5	
III-L	Swin-T	80.5	81.3	81.5	81.2	81.5	82.3	82.5	

nod	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Tw	o-sta	ge det	ectors			
ter RCNN-R101	39.8	60.1	43.3	22.5	43.6	52.8
ter RCNN-R50	38.4	59.0	42.0	21.5	42.1	50.3
KD	40.6	60.9	43.9	23.0	44.5	54.0
RCNN-X101	45.6	64.1	49.7	26.2	49.6	60.0
ter RCNN-R50	38.4	59.0	42.0	21.5	42.1	50.3
KD	42.2	62.8	46.0	24.2	46.6	55.3

Cityscapes

		-	-	
Method	Params	FLOPs	mIol	J (%)
Method	(M)	(G)	Val	Test
T: DeepLabV3-R101	61.1	2371.7	78.07	77.46
S: DeepLabV3-R18	13.6	572.0	74.21	73.45
DiffKD	13.6	572.0	77.78	76.24
T: DeepLabV3-R101	61.1	2371.7	78.07	77.46
S: PSPNet-R18	12.9	507.4	72.55	72.29
DiffKD	12.9	507.4	75.83	75.61

Visualizations

Student Teacher Denoised student Image