
Representation Gap in KD
• Challenge of the teacher-student model capacity gap.
• Existing methods are often complex and task-specific.

Noise in Distillation Features
• Student features are noisier due to the limited capacity.
• The noise leads to suboptimal distillation and performance.

Our DiffKD Approach

• A novel method using diffusion models for denoising the 
student features.

• Distillation on denoised student features with simple losses 
such as MSE.

Innovations
• Lightweight diffusion model with linear autoencoder.
• Adaptive noise matching for precise denoising.

Effectiveness
• Applicable to various feature types.
• Superior performance in multiple tasks and settings.
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ExperimentsMethod

Diffusion Model
• A lightweight model with ResNet

Bottleneck blocks.
• Trained with teacher features.
• Leveraged for denoising student 

features.

Noise Adapter
• Addresses the challenge of inexact 

noisy levels in student features.
• Measures the noisy level of feature.
• Complements additional Gaussian 

noise to feature to match the noisy 
level.

Visualizations

†: with advanced DIST loss

ImageNet with Stronger Teachers

Simultaneous Optimization with
• Task loss for training the student.
• KD loss for training the student & noise adapter.
• Diffusion loss for training the diffusion model.
• Reconstruction loss for training the linear autoencoder.

ImageNet

COCO Cityscapes
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